Package: ampir 1.1.0

ampir: Predict Antimicrobial Peptides

A toolkit to predict antimicrobial peptides from protein sequences on a genome-wide scale. It incorporates two support vector machine models ("precursor" and "mature") trained on publicly available antimicrobial peptide data using calculated physico-chemical and compositional sequence properties described in Meher et al. (2017) <doi:10.1038/srep42362>. In order to support genome-wide analyses, these models are designed to accept any type of protein as input and calculation of compositional properties has been optimised for high-throughput use. For best results it is important to select the model that accurately represents your sequence type: for full length proteins, it is recommended to use the default "precursor" model. The alternative, "mature", model is best suited for mature peptide sequences that represent the final antimicrobial peptide sequence after post-translational processing. For details see Fingerhut et al. (2020) <doi:10.1093/bioinformatics/btaa653>. The 'ampir' package is also available via a Shiny based GUI at <https://ampir.marine-omics.net/>.

Authors:Legana Fingerhut [aut, cre], Ira Cooke [aut], Jinlong Zhang [ctb], Nan Xiao [ctb]

ampir_1.1.0.tar.gz
ampir_1.1.0.zip(r-4.5)ampir_1.1.0.zip(r-4.4)ampir_1.1.0.zip(r-4.3)
ampir_1.1.0.tgz(r-4.4-x86_64)ampir_1.1.0.tgz(r-4.4-arm64)ampir_1.1.0.tgz(r-4.3-x86_64)ampir_1.1.0.tgz(r-4.3-arm64)
ampir_1.1.0.tar.gz(r-4.5-noble)ampir_1.1.0.tar.gz(r-4.4-noble)
ampir_1.1.0.tgz(r-4.4-emscripten)ampir_1.1.0.tgz(r-4.3-emscripten)
ampir.pdf |ampir.html
ampir/json (API)
NEWS

# Install 'ampir' in R:
install.packages('ampir', repos = c('https://legana.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/legana/ampir/issues

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

5.96 score 27 stars 34 scripts 341 downloads 1 mentions 5 exports 77 dependencies

Last updated 3 years agofrom:93bcaa2d07. Checks:OK: 1 NOTE: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 22 2024
R-4.5-win-x86_64NOTENov 22 2024
R-4.5-linux-x86_64NOTENov 22 2024
R-4.4-win-x86_64NOTENov 22 2024
R-4.4-mac-x86_64NOTENov 22 2024
R-4.4-mac-aarch64NOTENov 22 2024
R-4.3-win-x86_64NOTENov 22 2024
R-4.3-mac-x86_64NOTENov 22 2024
R-4.3-mac-aarch64NOTENov 22 2024

Exports:calculate_featuresdf_to_faapredict_ampsread_faaremove_nonstandard_aa

Dependencies:caretclasscliclockcodetoolscolorspacecpp11data.tablediagramdigestdplyre1071fansifarverforeachfuturefuture.applygenericsggplot2globalsgluegowergtablehardhatipredisobanditeratorskernlabKernSmoothlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixmgcvModelMetricsmunsellnlmennetnumDerivparallellyPeptidespillarpkgconfigplyrpROCprodlimprogressrproxypurrrR6RColorBrewerRcpprecipesreshape2rlangrpartscalesshapeSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetzdbutf8vctrsviridisLitewithr

How to train your model

Rendered fromtrain_model.Rmdusingknitr::rmarkdownon Nov 22 2024.

Last update: 2020-05-11
Started: 2020-04-13

Introduction to ampir

Rendered fromampir.Rmdusingknitr::rmarkdownon Nov 22 2024.

Last update: 2020-05-11
Started: 2019-04-30